ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Frederick G. Hammitt, M. John Robinson, and J. F. Lafferty
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 131-142
Technical Paper | doi.org/10.13182/NSE67-A17815
Articles are hosted by Taylor and Francis Online.
Two theoretical models to predict axial pressure distribution, void fraction, and velocity in a cavitating venturi are applied. The theoretical predictions are compared with experimental data from cold-water and mercury tests, and good agreement for the pressure profiles is found. The predicted void fractions are found to be too high, probably because the models assume zero slip or negative slip between the vapor and liquid phases. The analogy between the cavitating venturi and other choked-flow regimes is explored. One of the theoretical models used is based on the assumption that the cavitating venturi is essentially entirely analogous to a deLaval nozzle operating in a choked-flow regime with a compressible gas. The cavitating venturi is an example of an extremely low quality two-phase choked flow device. The present study is thus somewhat applicable to the study of liquid-cooled nuclear reactor pressure vessel or piping ruptures, which have received considerable attention in recent years. However, the qualities encountered in the present cavitation case are an order of magnitude lower than those usually considered for the reactor safety analyses, so that the present study is a limiting case for these.