ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
E.J. McGrath and Robert W. Albrecht
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 67-86
Technical Paper | doi.org/10.13182/NSE67-A17811
Articles are hosted by Taylor and Francis Online.
Formal development of the theory for harmonic analysis of neutron multiplying systems is carried out completely in the frequency domain. From basic probability theory, and an assumed reactor model, the problem is expressed as the Fokker-Planck equation in terms of the characteristic function, thus enabling the moments required for a statistical analysis to be obtained. Second-moment calculations include investigation into the bias in estimates of the power spectral density arising from the existence of finite record lengths. It is seen that for even very long records large biases can result, particularly at the lower frequencies. Variance analysis for estimates of the power spectral density investigates all moments up to and including the fourth for neutrons, delayed neutron precursors, and Fourier coefficients. The results show that for the most part, the variances can be described by a single parameter in which the extraneous neutron source plays a particularly important role. For reactors with large sources, the Fourier coefficients are shown to be Gaussian. For systems with small sources, variance in estimates of the power spectral density can become very large, and even the classical smoothed estimate is not consistent.