ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. K. Job, K. Subba Rao, M. Srinivasan
Nuclear Science and Engineering | Volume 84 | Number 3 | July 1983 | Pages 293-298
Technical Note | doi.org/10.13182/NSE83-A17798
Articles are hosted by Taylor and Francis Online.
It was shown earlier that nonsolvated crystalline BeH2 could serve as an effective moderator in reducing nuclear critical masses below minima achievable in CH2-moderated systems on account of its (n, 2n) reactivity bonus and higher hydrogen number density. The 9Be cross sections used in these calculations were found to overestimate the (n, 2n) multiplication. The precise (n, 2n) contribution to system reactivity and critical mass in the light of the latest 9Be cross-section data are evaluated. The results show that in the case of BeH2-moderated and BeO-reflected systems, five additional neutrons are born in the reaction multiplication in beryllium per 100 fission neutrons released in the core, resulting in a reactivity gain of ∼4%. The corresponding reduction in critical mass is ∼16%. The critical masses calculated with corrected 9Be cross sections show that the crystalline BeH2-moderated and BeO-reflected systems apparently have the smallest possible theoretical critical masses, namely, 0.180, 0.137, and 0.105 kg for 235U, 233U, and 239Pu, respectively.