ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
F. Käppeler, K. Wisshak, L. D. Hong
Nuclear Science and Engineering | Volume 84 | Number 3 | July 1983 | Pages 234-247
Technical Paper | doi.org/10.13182/NSE83-A17792
Articles are hosted by Taylor and Francis Online.
The neutron capture cross sections of 56Fe and 58Fe have been measured in the energy range from 10 to 250 keV relative to the gold standard. A pulsed 3-MV Van de Graaff accelerator and the 7Li(p,n) reaction served as a neutron source. Capture gamma rays were detected by two C6D6 detectors, which were operated in coincidence and anticoincidence modes. Two-dimensional data acquisition allowed the offline application of the pulse height weighting technique. The samples were located at a 60-cm flight path. The total time resolution was 1.2 ns allowing an energy resolution of 2 ns/m. The experimental setup was optimized with respect to low background and low neutron sensitivity. The additional 4-cm flight path from the sample to the detector was sufficient to discriminate against the capture of sample scattered neutrons by the additional time of flight. In this way reliable results were obtained even for the strong s-wave resonances of both isotopes. The experimental capture yield was analyzed with the FANAC code. The energy resolution allowed extraction of resonance parameters in the energy range from 10 to 100 keV. Individual systematic uncertainties were found to range between 5 and 10% while the statistical uncertainty is 3 to 5% for most resonances. A comparison to other results exhibits systematic differences of 7 to 11% for 56Fe. The present results for 58Fe differ up to 50% from the only other measurement for this isotope.