ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
H. F. McFarlane, S. G. Carpenter, P. J. Collins, D. N. Olsen, S. B. Brumbach
Nuclear Science and Engineering | Volume 87 | Number 3 | July 1984 | Pages 204-232
Technical Paper | doi.org/10.13182/NSE84-A17779
Articles are hosted by Taylor and Francis Online.
Experimental programs to investigate the physics characteristics of heterogeneous liquid-metal fast breeder reactor cores have been conducted in the zero-power plutonium reactor critical facility over a period of ∼ 5 yr. Previous experiments on conventional homogeneous cores provided appropriate benchmark data against which to judge the heterogeneous core results. For a heterogeneous reactor of the Clinch River Breeder Reactor size, both the physics parameters and the ability to predict them by common design methods differ substantially from an equivalent conventional design. Data errors and methods approximations have a greater effect in the analysis of heterogeneous cores, particularly with respect to such spatially varying parameters as power distributions and control rod worths. Preliminary results from recent experiments on a 700-MW(electric)-sized heterogeneous assembly are presented. As expected, predictions of physics parameters in general are worse than for conventional cores. Eigenvalue spectra and cross-section sensitivity have been used to characterize the spatial sensitivity of the cores.