ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
A. Goldfeld, A. Tsechanski, and G. Shani
Nuclear Science and Engineering | Volume 90 | Number 3 | July 1985 | Pages 330-340
Technical Note | doi.org/10.13182/NSE85-A17774
Articles are hosted by Taylor and Francis Online.
Different concepts of integral experiments for fusion blanket neutronics are investigated. The first is with the neutron source (tritium target of a neutron generator) located inside of or in immediate proximity to the stack of blanket materials under consideration. The second is based on irradiation of the stack by means of a collimated and, therefore, monoenergetic T(d, n)4He neutron beam with a tritium target placed outside the stack. The comparison between the different concepts is carried out by means of the Monte Carlo transport code MCNP with continuous energy treatment. The comparison between the two approaches reveals that the integral experiments with a collimated monoenergetic T(d,n)4He neutron beam result in a neutron spectrum that is better correlated with the details of elastic and inelastic scattering to the first level of the material's nuclei than the one with a neutron source inside a stack. In the case of a collimated neutron beam, there is a clearer separation between energy regions of different neutron interactions and, therefore, the source of discrepancies between measurement and calculation can be identified more easily and corrected by a proper treatment of the cross sections of the specified nuclear reactions.