ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Lu Han-Lin, Zhao Wen Rong, and Fan Pei Guo
Nuclear Science and Engineering | Volume 90 | Number 3 | July 1985 | Pages 304-310
Technical Paper | doi.org/10.13182/NSE85-3
Articles are hosted by Taylor and Francis Online.
The cross sections of the (n, 2n) reaction of 169Tm and of 181Ta at 14.61 ± 0.31 MeV were determined relative to the known neutron cross section of the 27Al(n, α)24Na reaction. The resulting values are 2014 ± 93 and 1269 ± 46 mb, respectively, when the Ryves et al. decay scheme is followed for the latter. The cross section of the (n, 3n) reaction of 169Tm was determined at 18.21 ± 0.24 MeV, relative to the 169Tm(n, 2n) cross section, to be 618 ± 25 mb. The shapes of the excitation curves for these three reactions were measured in the 12.3- to 18.3-MeV range. The (n, 2n) reactions were normalized at 14.61 MeV; the (n, 3n) reaction, at 18.21 MeV.