ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tien-Ko Wang, F. M. Clikeman, K. O. Ott
Nuclear Science and Engineering | Volume 93 | Number 3 | July 1986 | Pages 262-272
Technical Paper | doi.org/10.13182/NSE86-A17755
Articles are hosted by Taylor and Francis Online.
Experimental and computational studies of the gamma-ray energy deposition rate in the Fast Breeder Blanket Facility (FBBF) were performed with thermoluminescent dosimeters (TLDs). Various corrections including the TLD neutron sensitivities and the f factors (general cavity-ionization theory) were applied to the TLD measurements. Comparisons were made with results of three computer codes — 1DX, 2DB, and ANISN — and two nuclear libraries — LIB-IV and EPR. Both neutron and gamma-ray calculations were performed. The previously reported deviations between the gamma-ray energy deposition calculated-toexperiment (C/E) ratios for lead and for stainless steel were resolved. It is believed that the remaining C/E discrepancy comes primarily from the inaccuracies in the neutronics part of the calculations, because similar dropoffs are also reported in the FBBF reaction rate C/E comparisons. Detailed analysis of the deviation between transport (Sn) and diffusion calculations in the FBBF were performed. It was found that the deviation is built up in the blanket region and is largely independent of the curvature of the “independent” source region. Comparisons between Sn and diffusion calculations (on a one-dimensional basis) for neutron fluxes and reaction rates indicated that the use of transport calculations should reduce the discrepancies of C/E comparisons.