ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Peter Jacob, Herwig G. Paretzke
Nuclear Science and Engineering | Volume 93 | Number 3 | July 1986 | Pages 248-261
Technical Paper | doi.org/10.13182/NSE86-A17754
Articles are hosted by Taylor and Francis Online.
Exposure at 1 m above the ground from isotropic gamma-ray point sources in the soil has been studied by the Monte Carlo method for source energies from 40 keV to 5 MeV. Source depths from 0.1 down to 30 cm and horizontal distances out to 5 mfp have been considered. Considerable deviations were found in the results of different buildup factor methods since such methods do not account for geometric effects at the interface. Moreover, exposures from infinite and finite plane sources have been calculated. It is shown that, for source energies <662 keV, the buildup factor methods underestimate the kerma considerably. It is shown how surface roughness conditions can be accounted for by the introduction of an effective source depth in the soil. The validity of approximations used to describe the exposure from finite or inhomogeneous plane sources with values for infinite homogeneous plane sources was examined.