ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Peter Jacob, Herwig G. Paretzke
Nuclear Science and Engineering | Volume 93 | Number 3 | July 1986 | Pages 248-261
Technical Paper | doi.org/10.13182/NSE86-A17754
Articles are hosted by Taylor and Francis Online.
Exposure at 1 m above the ground from isotropic gamma-ray point sources in the soil has been studied by the Monte Carlo method for source energies from 40 keV to 5 MeV. Source depths from 0.1 down to 30 cm and horizontal distances out to 5 mfp have been considered. Considerable deviations were found in the results of different buildup factor methods since such methods do not account for geometric effects at the interface. Moreover, exposures from infinite and finite plane sources have been calculated. It is shown that, for source energies <662 keV, the buildup factor methods underestimate the kerma considerably. It is shown how surface roughness conditions can be accounted for by the introduction of an effective source depth in the soil. The validity of approximations used to describe the exposure from finite or inhomogeneous plane sources with values for infinite homogeneous plane sources was examined.