ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
James A. Davis
Nuclear Science and Engineering | Volume 25 | Number 2 | June 1966 | Pages 189-197
Technical Paper | doi.org/10.13182/NSE66-A17736
Articles are hosted by Taylor and Francis Online.
Approximate vacuum boundary conditions for a PN approximation are obtained by variational methods. Two stationary principles are proposed, one having what we shall call “odd” Marshak conditions as its natural boundary conditions, and the other having “even” Marshak conditions as its natural boundary conditions. The principles are valid for arbitrary geometry. The odd Marshak conditions are seen to be suitable for an odd-order PN approximation and the even Marshak conditions for an even-order PN approximation. The odd Marshak conditions are precisely the conditions obtained by Vladimirov from an extremum principle in which certain restrictions are imposed on the source and scattering. The present treatment contains no such restrictions.