ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
James A. Davis
Nuclear Science and Engineering | Volume 25 | Number 2 | June 1966 | Pages 189-197
Technical Paper | doi.org/10.13182/NSE66-A17736
Articles are hosted by Taylor and Francis Online.
Approximate vacuum boundary conditions for a PN approximation are obtained by variational methods. Two stationary principles are proposed, one having what we shall call “odd” Marshak conditions as its natural boundary conditions, and the other having “even” Marshak conditions as its natural boundary conditions. The principles are valid for arbitrary geometry. The odd Marshak conditions are seen to be suitable for an odd-order PN approximation and the even Marshak conditions for an even-order PN approximation. The odd Marshak conditions are precisely the conditions obtained by Vladimirov from an extremum principle in which certain restrictions are imposed on the source and scattering. The present treatment contains no such restrictions.