ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Bal Raj Sehgal, Rubin Goldstein
Nuclear Science and Engineering | Volume 25 | Number 2 | June 1966 | Pages 174-182
Technical Paper | doi.org/10.13182/NSE66-2
Articles are hosted by Taylor and Francis Online.
Resonance absorption in heterogeneous media with intermediate-mass moderators is investigated under the assumption that the flux is spatially flat in each region. Intermediate resonance parameters are introduced for scattering by all species present in the system and an intermediate resonance approximation is developed for calculating them. An improved rational representation for the lump escape probability is used and the calculation of the Dancoff factor is modified to account for the intermediate nature of the scattering-removal process by the outside moderator. The resonance integrals from the intermediate resonance approximation are compared with those from Monte Carlo and ZUT computer code calculations for the 6.7-eV resonance of 238U. The intermediate-resonance approximation results are found to be in good agreement with the Monte Carlo results. The ZUT results have large errors for heavy moderators, especially in undermoderated systems. Equivalence among heterogeneous systems and between heterogeneous and homogeneous systems is discussed. In the former case, an equivalence through the intermediate parameters is established.