ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. C. Lloyd, C. R. Richey, E. D. Clayton, D. R. Skeen
Nuclear Science and Engineering | Volume 25 | Number 2 | June 1966 | Pages 165-173
Technical Paper | doi.org/10.13182/NSE66-A17733
Articles are hosted by Taylor and Francis Online.
A series of criticality experiments were performed with plutonium (4.6% 240Pu) nitrate solution in stainless steel spheres of 11.5-, 14-, and 15.2-in. diam. Reflectors of water, concrete, paraffin, and stainless steel were used; experiments were also performed on the 15.2-in. sphere unreflected. The spheres were made critical with plutonium concentrations varying from 24 to 435 g Pu/liter and molarity varying from 0.2 to 7.7. The minimum critical volumes for Pu(NO3)4 in water containing 4.6% 240Pu were determined to be about 22 and 11 liters, respectively, for bare and reflected spheres at a concentration of 175 g Pu/liter. The effect of a 0.030-in. cadmium shell or a 4-in. air gap between the reflector and the vessel reduced the reflector worth to that of a nominal reflector (1-in. of water or less) for the concentrations of plutonium measured. Comparisons were made between experimental and theoretical results using multigroup diffusion theory.