ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
E. Johansson, E. Jonsson
Nuclear Science and Engineering | Volume 25 | Number 2 | June 1966 | Pages 157-164
Technical Paper | doi.org/10.13182/NSE66-A17732
Articles are hosted by Taylor and Francis Online.
Using the fast chopper at the Stockholm reactor R1, we have measured angular neutron-flux spectra in an arrangement consisting of short uranium rods in heavy water. The rods were mounted in an aluminum container placed in the central vertical channel of the reactor. The axes of the rods were horizontal and approximately located in a vertical plane. The uranium was 29-mm diam, the aluminum can was 1-mm thick, and the spacing was about 140 mm. We measured (E,, in the vertical direction , for various positions . At 1 eV the results obtained were equal to each other within ±7%, but in the thermal region, they differed considerably. Thus, at 0.01 eV, the highest value measured was as much as 4.5 times the lowest one. In spite of the unclean geometry, we have also calculated the angular-flux spectra, starting from scalar-flux spectra obtained from the THERMOS code. The shape of the calculated spectra of the angular flux agreed within a few percent with the experimental spectra. From a combination of calculated and experimental results, we also obtained the spectrum of the incoming neutron current for a fuel rod. This current proved to have a neutron temperature about 7°C above the neutron temperature of the flux halfway between two rods. In the low-energy region (around 0.015 eV) the out-flux from a rod showed a wavy variation, believed to depend on Bragg effects in the metal.