ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Anil Kumar, M. Srinivasan, K. Subba Rao
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 155-164
Technical Note | doi.org/10.13182/NSE83-A17722
Articles are hosted by Taylor and Francis Online.
The Trombay criticality formula (TCF) has been derived by incorporating a number of well-known concepts of criticality physics to enable prediction of changes in critical size or keff following alterations in geometrical and physical parameters of uniformly reflected small reactor assemblies characterized by large neutron leakage from the core. The variant parameters considered are size, shape, density and diluent concentration of the core, and density and thickness of the reflector. The mass-to-surface-area ratio of the core, is essentially a measure of the product ρr extended to nonspherical systems and plays a dominant role in the TCF. The functional dependence of keff on σ/σc, the system size relative to critical, is expressed in the TCF through two alternative representations, namely the modified Wigner rational form and the exponential form as follows: where is the k∞ of the critical system. The quantity in the square brackets is close to unity and Z is a parameter weakly dependent on both the physical and geometrical properties of the core, where θ = ln[/( - 1)] and ε is a parameter introduced to account for the steep rise in the net leakage probability for highly subcritical cores. The applications of the TCF range from the quick computation of the keff of a lump of fissile fuel having arbitrary shape and density through the study of keff of highly enriched fissile materials during transportation accidents to an estimation of the void and fuel expansion coeffficients of reactivity in high leakage systems.