ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Anil Kumar, M. Srinivasan, K. Subba Rao
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 155-164
Technical Note | doi.org/10.13182/NSE83-A17722
Articles are hosted by Taylor and Francis Online.
The Trombay criticality formula (TCF) has been derived by incorporating a number of well-known concepts of criticality physics to enable prediction of changes in critical size or keff following alterations in geometrical and physical parameters of uniformly reflected small reactor assemblies characterized by large neutron leakage from the core. The variant parameters considered are size, shape, density and diluent concentration of the core, and density and thickness of the reflector. The mass-to-surface-area ratio of the core, is essentially a measure of the product ρr extended to nonspherical systems and plays a dominant role in the TCF. The functional dependence of keff on σ/σc, the system size relative to critical, is expressed in the TCF through two alternative representations, namely the modified Wigner rational form and the exponential form as follows: where is the k∞ of the critical system. The quantity in the square brackets is close to unity and Z is a parameter weakly dependent on both the physical and geometrical properties of the core, where θ = ln[/( - 1)] and ε is a parameter introduced to account for the steep rise in the net leakage probability for highly subcritical cores. The applications of the TCF range from the quick computation of the keff of a lump of fissile fuel having arbitrary shape and density through the study of keff of highly enriched fissile materials during transportation accidents to an estimation of the void and fuel expansion coeffficients of reactivity in high leakage systems.