ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
M. Ishii, H. K. Fauske
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 131-146
Technical Paper | doi.org/10.13182/NSE83-A17719
Articles are hosted by Taylor and Francis Online.
For certain postulated severe accident conditions such as a loss of piping integrity and a loss of heat sink in connection with liquid-metal fast breeder reactor safety analysis, the process of decay heat removal can lead to coolant boiling. For such low-heat-flux/low-flow conditions, a dryout or critical heat flux criterion is required in order to assess the potential for fuel pin failure and melting. Computer codes and full-scale experimental data are not available to completely address this problem at this time. Based on the interpretation of available experimental data and new analyses, it is concluded that a typical subassembly can be safely cooled (avoid dryout) under natural convection conditions for heat fluxes below ∼8 to 10% of the average nominal power; i.e., decay heat power levels can be safely accommodated in the natural convective regime. Furthermore, since this coolability limit is predicted to be rather insensitive to the subcooling value, it follows that the safety case relative to decay heat removal for an intact core geometry also becomes essentially independent of detailed accident conditions such as the potential for temporary stagnated flow or inlet flow reversal conditions.