ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Takanobu Kamei, Tadashi Yoshida
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 83-97
Technical Paper | doi.org/10.13182/NSE83-1
Articles are hosted by Taylor and Francis Online.
In the design of a large liquid-metal fast breeder reactor (LMFBR), the bias-factor method is usually applied to reduce the error of predicted values of neutronics parameters. These bias factors are obtained through the analysis of mock-up experiments. When there exist some differences between the reactor to be designed and its mock-up experimental system, it is impossible to be free from extrapolation errors even after the application of the bias factor. This paper presents an evaluation model for the above kind of extrapolation error, which still remains after the biasing, due to cross-section uncertainties. As an example of an application of this model, the extrapolation error of the design parameters of a 1000-MW(electric) fast breeder reactor was evaluated for the case where bias factors from the large LMFBR mock-up critical experiment, ZPPR-10D, were available. As a result, the error in keff was found to range 0.3 to 1.1% depending on how precisely the reactivity effect of higher plutonium isotopes (especially 241Pu) was predicted. The extrapolation error was predicted to be <2.5% for the control rod worth and also for the fission rate distributions of 239Pu and 238U. It was also shown that the extrapolation error for the control rod worth was reduced by use of a bias factor constructed from some different rod patterns.