ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
A. Pavlik, G. Winkler, M. Uhl, A. Paulsen, H. Liskien
Nuclear Science and Engineering | Volume 90 | Number 2 | June 1985 | Pages 186-202
Technical Note | doi.org/10.13182/NSE85-A17676
Articles are hosted by Taylor and Francis Online.
Using activation techniques, the excitation functions for the 58Ni(n,2n)57Ni and 58Ni(n,np + pn + d)57Co reactions were measured in the neutron energy range from 12.7 MeV, close to the (n,2n) threshold, to 19.6 MeV with an accuracy of typically ∼4.5 and ∼6%, respectively. In the 13.4- to 14.8-MeV energy range, the accuracy achieved for the cross sections of the above reactions was typically 2 and 3%, respectively. In addition, cross sections were measured for the 58Ni(n,p)58Co reaction in the 14-MeV region with an accuracy of typically ∼2%. The experimental results were compared with calculations based on the optical model, the compound nucleus model, and the exciton model of nuclear reactions. A quite satisfactory simultaneous reproduction of all experimental data, including the proton- and alpha-production spectrum, was achieved employing a unique set of model parameters. Moreover, the new (n,2n) cross sections provide an improved data base for reactor dosimetry and spectrum unfolding applications.