ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tadashi Yoshida, Jun-ichi Katakura
Nuclear Science and Engineering | Volume 93 | Number 2 | June 1986 | Pages 193-203
Technical Paper | doi.org/10.13182/NSE86-A17668
Articles are hosted by Taylor and Francis Online.
The beta-delayed emission process of gamma rays was treated with a gross theory of beta decay and a cascade gamma transition model. The method proposed was applied to calculations of the delayed gamma-ray energy spectra for short-lived fission product nuclides that lack experimental information on their gamma-ray transition properties. The calculated results were used to complement the summation calculation of the aggregate gamma-ray spectrum from an irradiated sample of fissile material after a short cooling time. A satisfactory agreement was obtained between the calculated and the measured spectra, which supported the appropriateness of the coupled gross beta and cascade gamma model. The method was also applied to the calculation of the equilibrium energy spectrum of the delayed gamma rays in operating reactors. The resulting shape resembles the prompt fission-gamma-ray spectrum.