ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Henry H. Hatjsner, John L. Zambrow
Nuclear Science and Engineering | Volume 1 | Number 1 | March 1956 | Pages 92-101
Technical Paper | doi.org/10.13182/NSE56-A17661
Articles are hosted by Taylor and Francis Online.
Uranium powder can readily be prepared by hydriding solid uranium and by the decomposition of the hydride. The powder particles are of –325 mesh size. This powder compacts to density varying between 12 and 14 gm/cc. Sintering subsequent to compacting results in a material of high strength characterized by a slight porosity and coarse grain structure. Hot pressing uranium powder in the alpha temperature range at pressures of approximately 10 to 15 tsi results in a material of perfect density and a small grain structure. Hot compacting uranium powder is a process perfectly feasible for production.