ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
William M. Grim, Jr., Bruce B. Barrow, John C. Simons, Jr.
Nuclear Science and Engineering | Volume 1 | Number 1 | March 1956 | Pages 80-91
Technical Paper | doi.org/10.13182/NSE56-A17660
Articles are hosted by Taylor and Francis Online.
Measurement of reactor period at low power levels (from 10-10 to 10-5 of full power) during start-up is desirable to permit the full power level to be reached rapidly yet safely. At low flux levels, it is natural to attempt to obtain period information by differentiating the output of a logarithmic counting-rate meter. Because of the random arrival of pulses at the input of the system, however, the period indicated at the output will fluctuate about the correct value, the magnitude of the fluctuation depending upon the average counting rate and upon the system parameters. If the diode in the logarithmic circuit is replaced for incremental analysis by an appropriate linear resistor, the magnitude of the output fluctuations can be calculated by applying shot noise theory. These calculations are here carried out for the infinite-period case (constant counting rate), using the counting rate as an independent variable. Experiments were carried out, and the results agreed closely with theory. Although the present study is based on fluctuations occurring when flux is held constant, other work shows the results to be applicable also to flux transients.