ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
G. Montet, G. Hennig, A. Kurs
Nuclear Science and Engineering | Volume 1 | Number 1 | March 1956 | Pages 33-52
Technical Paper | doi.org/10.13182/NSE56-A17656
Articles are hosted by Taylor and Francis Online.
The distribution of displaced carbon atoms in irradiated graphite has been studied with a radioactive tracer technique. Radiation-damaged graphite containing radioactive displaced carbon (C11) atoms was prepared by cyclotron or betatron irradiation. After partial annealing, the distribution of the C11 was determined by controlled oxidation and counting of CO2 gas samples. Experiments on various types of weakly irradiated graphite indicate that a very small fraction of the displaced atoms are driven to particle surfaces during the annealing process, the fraction being higher for natural graphite than for artificial graphite and varying inversely with graphite particle size. Experimental conditions were varied to determine their effects on the distribution of the disaplaced atoms. Data obtained indicate that very little reintegration of displaced atoms occurs during short neutron bombardments at room temperature, that about 80% of the atoms reintegrate into vacancies during annealing below 400°C and that the remainder coalesce into complexes, and that large scale motion of the complexes begins at 400°C and ceases at approximately 1000°C. At this latter temperature the complexes appear to reach their final positions; however, they are relatively loosely bound and integrate progressively at these sites until they become indistinguishable from lattice atoms near 1700°C. Vacancies resulting from prior irradiation were found by tracer experiments to be effective traps for displaced atoms so that, during annealing of subsequent damage, the fraction that reaches the particle surfaces decreases rapidly with bombardment.