ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
J. T. Thomas, J. K. Fox, Dixon Callihan
Nuclear Science and Engineering | Volume 1 | Number 1 | March 1956 | Pages 20-32
Technical Paper | doi.org/10.13182/NSE56-A17655
Articles are hosted by Taylor and Francis Online.
Nuclear properties of U233 and U235 are compared using data obtained in a series of critical experiments. Aqueous solutions of uranyl oxyfluoride containing uranium enriched to about 90% in each of the two isotopes have been made critical in water-reflected spherical reactors having diameters of 26.4 and 32.0 cm. Assuming the reported nuclear constants for U235 are reliably known and assuming equality of the neutron leakage spectra of U233 and U235 for the same water-reflected critical sphere, the value of η(U233) at 0.026 ev was determined to be 2.31 ± 0.03. The critical masses for the two isotopes in these systems have been measured over the temperature range from 20°C to 100°C; corresponding values of the reactivity temperature coefficient are reported. Delayed neutron yields for the two isotopes were compared by noting the periods resulting from the withdrawal of a boron poison from the critical spheres. It is shown that the yield from U233 is about one-third that from U235, in agreement with other determinations.