ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
David Tai-Ko Shaw
Nuclear Science and Engineering | Volume 24 | Number 3 | March 1966 | Pages 227-238
Technical Paper | doi.org/10.13182/NSE66-A17636
Articles are hosted by Taylor and Francis Online.
The study is intended to introduce an analytical approach to the transient problem of the nonlinear thermoelectric systems. The problem of predicting the output current as a function of time and that of predicting the temperature distributions in the thermoelectric elements as a function of both time and distance are determined with a given heat-input function. The analysis of the system is complicated by the following facts: 1) There exist several singularities in the system, and these singularities make the ordinary power expansions converge very slowly. 2) The boundary conditions of the initial transient and of the transient as the system approaches steady state yield two highly nonlinear differential equations of which the approximate solutions are very hard to obtain. The first problem is solved by using logarithmic and other transformations to remove the singularities. The second problem is overcome by applying the technique of the special expansion of Jacobi.