ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Thomas S. Bustard, Joseph Silverman
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 586-596
Technical Paper | doi.org/10.13182/NSE86-A17626
Articles are hosted by Taylor and Francis Online.
The Internal bremsstrahlung from 90Sr−90Y and the external bremsstrahlung yields in various target materials were measured, using a novel experimental approach. The bremsstrahlung targets employed consisted of materials from atomic numbers 13 to 73 and ranged in thickness from 4 mg/cm2 past the range of the 90Y beta particles. The experiment performed by means of pulse-height scintillator spectrometric techniques enabled the observation and semiempirical calculation of how the bremsstrahlung spectrum builds up and is simultaneously attenuated, as well as the corresponding changes in the beta spectrum transmitted by the absorbers. This approach allows determination of generated bremsstrahlung spectra without having to make large attenuation corrections to thick target data. A brief description of internal bremsstrahlung and the theoretical aspects of external bremsstrahlung generation is given. Although there are several thick-target theories, only the Evans approximation to thick-target external bremsstrahlung is considered in detail. The Evans theory provides a good fit to the high energy portion of bremsstrahlung spectra and is therefore in prevalent use. Besides, it provides a clear example as to how yield constants or values are determined.The bremsstrahlung yield constants were found to differ, depending upon whether photon number or energy is considered. Further, a difference was found between the yield constants for 90Sr−90Y in secular equilibrium and 90Y alone, indicating that an energy dependence also exists. The yield constants determined are 0.34 × 10−3 and 0.24 × 10−3 MeV−1 for 90Sr−90Y, and 0.50 × 10−3 and 0.41 × 10−3 MeV−1 for 90Y, for bremsstrahlung energy and photons, respectively. This result indicates that the yield constant is energy dependent and also differs depending upon whether bremsstrahlung photon number or energy is being considered.