ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
John J. Roberts, R. F. Fleming, Harold P. Smith, Jr.
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 573-580
Technical Paper | doi.org/10.13182/NSE86-A17624
Articles are hosted by Taylor and Francis Online.
The logic of the time-optimal solution to the xenon shutdown problem for a point reactor model has been successfully applied to an actual reactor system. Spatial integration of the flux-square weighted xenon concentration was used. The predetermined power variation with time successfully held the xenon boundary and created a final shutdown (target) trajectory whose maximum was within three percent of the specified boundary based on the total reactivity variation of the program. Although digital computer calculation, occasionally using trial-and-error techniques, was necessary to predict the power-time shutdown program, the computer requirements were not excessive. Approximately 7 h of additional reactor operation was utilized to prevent a 16 h period during which xenon buildup would have prevented reactor operation.