ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
John J. Roberts, R. F. Fleming, Harold P. Smith, Jr.
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 573-580
Technical Paper | doi.org/10.13182/NSE86-A17624
Articles are hosted by Taylor and Francis Online.
The logic of the time-optimal solution to the xenon shutdown problem for a point reactor model has been successfully applied to an actual reactor system. Spatial integration of the flux-square weighted xenon concentration was used. The predetermined power variation with time successfully held the xenon boundary and created a final shutdown (target) trajectory whose maximum was within three percent of the specified boundary based on the total reactivity variation of the program. Although digital computer calculation, occasionally using trial-and-error techniques, was necessary to predict the power-time shutdown program, the computer requirements were not excessive. Approximately 7 h of additional reactor operation was utilized to prevent a 16 h period during which xenon buildup would have prevented reactor operation.