ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
John T. Mihalczo
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 557-563
Technical Paper | doi.org/10.13182/NSE86-A17621
Articles are hosted by Taylor and Francis Online.
A method is described for predicting the neutron multiplication factors of geometrically complicated configurations of unreflected unmoderated enriched- uranium metal from the results of two delayed-critical experiments in simple geometry. The method requires two constants characteristic of the metal. These are the total collision cross section (∑t) and the number of neutrons produced per collision (υ∑f/∑t), which are obtained from the two experiments by using S12 transport-theory calculations with isotropic scattering. These constants, together with the assumption of isotropic scattering, are then used in 05R Monte Carlo neutron-transport calculations to predict the multiplication factors. The method has been tested by predicting the multiplication factors of 21 different delayed-critical assemblies with a wide variety of geometries to within a standard deviation of 1.5%.