ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
Donna Wuschke and M. Tomlinson
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 521-530
Technical Paper | doi.org/10.13182/NSE68-A17596
Articles are hosted by Taylor and Francis Online.
The radiation decomposition of meta-terphenyl by 1.35-MeV electrons has been measured for temperatures from 200 to 440°C, beam currents from 3 to 100μA and average dose rates from 0.25 to 15 W/g. G(-terphenyl) was 0.25 at 300°C. Decomposition increased above 350°C and depended on the local radiation intensity rather than the average dose rate. At 440°C, G(-terphenyl) increased from 0.62 at 100-μA beam current to 1.6 at 3 μA. Decomposition increased with pulse frequency for intermittent irradiation. Postirradiation thermal decomposition was measured. Thermally initiated reactions did not contribute appreciably to decomposition during irradiation. The results indicate that above ≈ 350°C the radiolytic decomposition mechanism differs from that at lower temperatures. The data provide information about the contributions of radiolytic and pyrolytic decomposition in high-temperature organic-cooled nuclear reactor systems.