ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Donna Wuschke and M. Tomlinson
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 521-530
Technical Paper | doi.org/10.13182/NSE68-A17596
Articles are hosted by Taylor and Francis Online.
The radiation decomposition of meta-terphenyl by 1.35-MeV electrons has been measured for temperatures from 200 to 440°C, beam currents from 3 to 100μA and average dose rates from 0.25 to 15 W/g. G(-terphenyl) was 0.25 at 300°C. Decomposition increased above 350°C and depended on the local radiation intensity rather than the average dose rate. At 440°C, G(-terphenyl) increased from 0.62 at 100-μA beam current to 1.6 at 3 μA. Decomposition increased with pulse frequency for intermittent irradiation. Postirradiation thermal decomposition was measured. Thermally initiated reactions did not contribute appreciably to decomposition during irradiation. The results indicate that above ≈ 350°C the radiolytic decomposition mechanism differs from that at lower temperatures. The data provide information about the contributions of radiolytic and pyrolytic decomposition in high-temperature organic-cooled nuclear reactor systems.