ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. H. Karcher, R. C. Erdmann, O. C. Baldonado
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 492-499
Technical Paper | doi.org/10.13182/NSE68-A17592
Articles are hosted by Taylor and Francis Online.
The feasibility of track-length distribution biasing for the calculation of spatial and angular particle flux far from the source in an infinite medium is investigated. Calculations are performed for an idealized particle transport model having an exact analytical solution, and results for scalar flux are given to a penetration distance of approximately 60 mean-free-paths. Results are also given for angular distributions. It is found that the “optimum” biasing parameter “a” for scalar flux prediction can be approximated by a exp(−a) = 0.368c n/40 (a revised form of an empirical expression from an earlier study), where c is the probability of scatter and n is the desired penetration distance. If appropriate corrections are made for the effects of inelastic and hydrogen scatter, the present results can provide useful guidance in the application of the track-length distribution biasing technique to more realistic systems.