ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Martin Becker
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 458-464
Technical Paper | doi.org/10.13182/NSE68-A17588
Articles are hosted by Taylor and Francis Online.
The most general current formulations of the point reactor kinetics equations permit the flux shape function to be time dependent. This permissibility has led to the development of a class of space-time analyses referred to as adiabatic or quasistatic. The use of time-independent importance weighting, however, can lead to difficulties, as is shown in an example. In this paper, point kinetics equations are derived from a variational principle in such a way as to permit time-dependent importance shape functions. “Extra” terms due to the explicit time dependence of the shape functions appear, and normalization conditions are obtained by which these terms can be eliminated. Additional differences from conventional form appear if one chooses to use different importance shape functions for flux and precursor equations, but these differences can be neglected for many cases of practical interest.