ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. Mennig, J. T. Marti
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 365-368
Technical Paper | doi.org/10.13182/NSE68-A17580
Articles are hosted by Taylor and Francis Online.
A semi-analytical method for solving the monoenergetic transport equation with isotropic scattering in plane geometry is developed, in which the slab system is subdivided into a number of discrete space points in x, while the angular variable is treated analytically. This is equivalent to taking N to ∞ in SN theory and avoids the numerical instabilities inherent in the limiting process. General boundary conditions are introduced allowing finite multilayer slabs, cells, and shielding problems with specified incident angular distribution of neutrons to be handled by the same formalism. Analytical expressions are derived for the angular distributions, and fluxes are obtained by solving a matrix problem, where the matrix elements are integrals over rational functions of the angular variable. Computing times are comparable to low-order SN calculations.