ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Ch. Lagrange, O. Bersillon, D. G. Madland
Nuclear Science and Engineering | Volume 83 | Number 3 | March 1983 | Pages 396-401
Technical Note | doi.org/10.13182/NSE83-A17575
Articles are hosted by Taylor and Francis Online.
As coupled-channel calculations are very time consuming when applied to odd-mass target nuclei using the actual level schemes, the adequacy of the following approximation is studied. Calculations are performed for a fictitious even-even nucleus with the same mass number as the odd-mass target of interest. Deformation parameters are obtained from a systematic available in this mass region, and the optical model parameters used are extrapolated from those determined for the neighboring even-even nuclei. Direct elastic and inelastic scattering cross sections resulting from such calculations are distributed among the true ground-state band levels of the odd-mass nucleus. Comparisons of calculations made with a fixed set of optical parameters, but using either the actual or the fictitious level scheme, are presented for ground-state bands of K = 1/2 and K = 5/2. The approximation proposed can be applied with great confidence over the energy range 10 keV to 20 MeV in case of K = 1/2. In case of K = 5/2, the approximation gives satisfactory results in the limited energy range 4 to 20 MeV.