ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shoji Watanabe, Kojiro Nishina
Nuclear Science and Engineering | Volume 86 | Number 3 | March 1984 | Pages 283-296
Technical Paper | doi.org/10.13182/NSE84-A17557
Articles are hosted by Taylor and Francis Online.
A stability analysis using a one-group model is presented for a coupled-core system. Positive prompt feedback of a γpj form is assumed, where pj is the fractional power variation of core j. Prompt power variations over a range of a few milliseconds after a disturbance are analyzed. The analysis combines Liapunov's method, prompt jump approximation, and the eigenfunction expansion of coupling region response flux. The last is treated as a pseudo-delayed neutron precursor. An asymptotic stability region is found for pj. For an asymmetric flux variation over a system of two coupled cores, either pI or pII can slightly exceed, by virtue of the coupling effect, the critical value (β/γ − 1) of a single-core case. Such a stability region is increased by additional inclusion of the coupling region fundamental mode in the treatment. The coupling region contributes to stability through its delayed response and coupling. An optimum core separation distance for stability is found.