ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M. A. Sweeney, J. N. Olsen
Nuclear Science and Engineering | Volume 89 | Number 3 | March 1985 | Pages 233-246
Technical Paper | doi.org/10.13182/NSE85-A17544
Articles are hosted by Taylor and Francis Online.
The Sandia National Laboratories Particle Beam Fusion Accelerator PBFA II is expected to produce significant amounts of prompt penetrating radiation from bremsstrahlung. In the present study the radiation environment for two voltages, 30 and 5 MV, has been calculated using a three-dimensional electron-photon transport code. Because of the facility design changes required with the high-voltage lithium ion option, most calculations were done at 30 MV. The dose to personnel, ∼1 mrad for the 30-MV option, is acceptable. Reliable operation of electronic components, however, requires significant changes to systems in various stages of completion. Shielding and relocation options that minimize interference with the completion schedule of the accelerator and with its operation and maintenance have been investigated. We find that an array of control devices located in the east alcove of the basement should be moved to the main control/monitor screen room in the low bay. A thicker top cover on the vacuum chamber and a higher water level in the pulse-forming section allow electronics in the screen room to cope with the hard 30-MV spectrum. A two-stage shield has been designed to protect the KrF laser and its associated electronics, which cannot be removed from the basement. The two-stage shield consists of a thick steel bottom cover on the vacuum chamber and a thick shield wall on the north alcove of the basement.