ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Robert L. Kiang
Nuclear Science and Engineering | Volume 89 | Number 3 | March 1985 | Pages 207-216
Technical Paper | doi.org/10.13182/NSE85-A17542
Articles are hosted by Taylor and Francis Online.
Concerns about nuclear power plant safety have stimulated research in thermal hydraulics of reactor cooling systems. Complementary efforts in computer code development and in experiments using scaled models are being made. The applicability of the experimental results to a full-size power plant system depends on the scaling criteria on which the test facility is designed. Several sets of scaling criteria can be found in the literature, not all of them compatible with one another. A critical review and clarification of a number of these scaling criteria are presented. Specifically, the commonly recognized linear scaling, volume scaling, and several sets of single- and two-phase scaling criteria recently derived by M. Ishii are examined in terms of their limitations and interrelationships. It is shown that (a) as far as thermal-hydraulic modeling is concerned, Ishii's time-distorted scaling is the most general one to date, (b) Ishii's scaling offers the model designer a flexibility in the height of the model, and (c) both the linear and volume scaling are special cases of the Ishii scaling, and each has its own practical limitations.