ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Keisuke Kobayashi
Nuclear Science and Engineering | Volume 92 | Number 3 | March 1986 | Pages 397-406
Technical Paper | doi.org/10.13182/NSE86-A17528
Articles are hosted by Taylor and Francis Online.
It is shown that, after integrating the transport equation over the azimuthal angle of the polar coordinates, the resulting discrete ordinates equation with respect to the polar angle is equivalent to that of the spherical haromonics method provided that the discrete ordinates were chosen as the roots of the associated Legendre functions. The form of this semi-discrete ordinates equation is independent of the order of the approximation and simpler than those of the usual spherical harmonics method. The present method may be regarded as an extension of the Wick-Chandrasekhar method to multidimensional problems, since the present equation is reduced to the second-order form of the Wick-Chandrasekhar equation in the case of one-dimensional slab geometry.