ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
L. F. Hansen, H. M. Blann, R. J. Howerton, T. T. Komoto, B. Pohl
Nuclear Science and Engineering | Volume 92 | Number 3 | March 1986 | Pages 382-396
Technical Paper | doi.org/10.13182/NSE86-A17527
Articles are hosted by Taylor and Francis Online.
The emission spectra from holmium (0.8 mfp), tantalum (1 and 3 mfp), gold (1.9 mfp), and lead (1.0 mfp) have been measured using the sphere transmission and time-of-flight techniques. The 14-MeV incident neutrons are from the Lawrence Livermore National Laboratory insulated-core-transformer accelerator using the 3H(d, n)4He reaction. These materials were chosen to span a wide range of heavy nuclei, including deformed (holmium and tantalum), spherical (gold), and closed-shell (lead) nuclei. The neutron emission spectra have been measured in the 1- to 15-MeV energy interval and the results compared with Monte Carlo calculations performed using the neutron-photon transport code TART and evaluated neutron cross-section files. An alternative representation of the secondary neutron spectra has been carried out by using model calculations for precompound processes and collective effects in the calculations of the pulsed sphere emission spectra. Their importance in the quality of the agreement between measurements and calculations is discussed. The measurements are compared with the predictions of two evaluated neutron libraries, the ENDF/B-V and evaluated nuclear data library (ENDL). In addition, calculations have been carried out using neutron cross sections calculated directly from well-accepted nuclear models by the ALICE/LIVERMORE 82 and ECIS 79 codes. The quality of the agreements between the measurements and calculations obtained with the latter cross sections and those from the ENDL library is reasonably good for all the targets, and these are systematically better than the results obtained with the ENDF/B-V files. Discrepancies between measurements and calculations as great as 80% are found using the ENDF/B-V files for the emission of neutrons from gold in the 5- to 10-MeV energy range.