ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Report: New York state adding 1 GW of nuclear to fleet
New York Gov. Kathy Hochul has instructed the state’s public electric utility to add at least 1 gigawatt of new nuclear by building a large-scale nuclear plant or a collection of smaller modular reactors, according to the Wall Street Journal.
L. F. Hansen, H. M. Blann, R. J. Howerton, T. T. Komoto, B. Pohl
Nuclear Science and Engineering | Volume 92 | Number 3 | March 1986 | Pages 382-396
Technical Paper | doi.org/10.13182/NSE86-A17527
Articles are hosted by Taylor and Francis Online.
The emission spectra from holmium (0.8 mfp), tantalum (1 and 3 mfp), gold (1.9 mfp), and lead (1.0 mfp) have been measured using the sphere transmission and time-of-flight techniques. The 14-MeV incident neutrons are from the Lawrence Livermore National Laboratory insulated-core-transformer accelerator using the 3H(d, n)4He reaction. These materials were chosen to span a wide range of heavy nuclei, including deformed (holmium and tantalum), spherical (gold), and closed-shell (lead) nuclei. The neutron emission spectra have been measured in the 1- to 15-MeV energy interval and the results compared with Monte Carlo calculations performed using the neutron-photon transport code TART and evaluated neutron cross-section files. An alternative representation of the secondary neutron spectra has been carried out by using model calculations for precompound processes and collective effects in the calculations of the pulsed sphere emission spectra. Their importance in the quality of the agreement between measurements and calculations is discussed. The measurements are compared with the predictions of two evaluated neutron libraries, the ENDF/B-V and evaluated nuclear data library (ENDL). In addition, calculations have been carried out using neutron cross sections calculated directly from well-accepted nuclear models by the ALICE/LIVERMORE 82 and ECIS 79 codes. The quality of the agreements between the measurements and calculations obtained with the latter cross sections and those from the ENDL library is reasonably good for all the targets, and these are systematically better than the results obtained with the ENDF/B-V files. Discrepancies between measurements and calculations as great as 80% are found using the ENDF/B-V files for the emission of neutrons from gold in the 5- to 10-MeV energy range.