ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
J. Q. Shao, G. P. Couchell, J. J. Egan, G. H. R. Kegel, S. Q. Li, A. Mittler, D. J. Pullen, W. A. Schier, E. D. Arthur
Nuclear Science and Engineering | Volume 92 | Number 3 | March 1986 | Pages 350-371
Technical Paper | doi.org/10.13182/NSE86-A17525
Articles are hosted by Taylor and Francis Online.
Neutron inelastic scattering cross sections for 238U levels between 680- and 1530-keV excitation energy have been measured in the incident neutron energy range from 0.9 to 2.2 MeV. The (n, n′) time-of-flight (TOF) technique was used to obtain direct differential inelastic cross sections. Neutrons were generated using the 7Li(p, n)7Be reaction. Experimental parameters were optimized to achieve an energy resolution of <15 keV. Level cross sections were deduced from the measured 125-deg differential scattering cross sections. The validity of this procedure was confirmed by measuring the angular distributions for nine levels at En = 1.5 and 2.0 MeV. Background due to fission induced by fast neutrons was subtracted. The TOF spectra were unfolded using the method of the response function. The data were corrected for multiple scattering and neutron attenuation in disk scatterer geometry using an analytic method. Theoretical calculations of the cross sections were carried out using reaction models appropriate to the description of compound nucleus and direct interaction processes. The data are compared to (n, n ′γ) results and the ENDF/B-V evaluation.