ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
G. S. Brunson, E. N. Pettitt, and R. D. McCurdy
Nuclear Science and Engineering | Volume 1 | Number 2 | May 1956 | Pages 174-184
Technical Paper | doi.org/10.13182/NSE56-A17521
Articles are hosted by Taylor and Francis Online.
Delayed neutron studies have been made in the Experimental Breeder Reactor (EBR), using a conventional sample transfer system and a neutron counter comprised of BF3 tubes in a graphite geometry. Samples of Th, U233, U235, U238, and Pu were irradiated in a fast flux; samples of U233, U235, and Pu in a thermal flux. The ratio of the delayed neutron yield per fission (based on the longest four periods) to the delayed neutron yield per fast fission of U235 was determined as: for fast fission of U233, 0.414 ± 7.5%; for fast fission of Pu, 0.405± 7.5%; for fast fission of Th, 3.09 ± 17%; for fast fission of U238, 2.23 ± 7.5%. The ratio of fast fission to thermal fission delayed neutron yields was not significantly different from unity for all samples except Pu, where the ratio of thermal to fast fission yields was 0.888 ± 6%. This latter is believed to be primarily attributable to the 5% fraction of Pu240 in the sample.