ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Wm. A. Thomas, E. E. Lewis
Nuclear Science and Engineering | Volume 84 | Number 1 | May 1983 | Pages 67-71
Technical Note | doi.org/10.13182/NSE83-A17459
Articles are hosted by Taylor and Francis Online.
Two iterative algorithms are formulated for the solution of the within-group neutron diffusion equation in three dimensions. The algorithms are highly vectorizable, operating, respectively, on vectors with lengths of order N3/2 and of N2/2, where N is the number of mesh points in each of the three directions. The methods are well suited for present day pipeline computers. On a Cyber-205, they yield floating point operation rates that are higher by a factor of 20 to 30 than those achieved with scalar operations of the same algorithms. Convergence rates, as well as acceleration by two-cyclic overrelaxation, are investigated. For fixed source test problems with 30 X 30 X 30 grids, solutions are obtained in ∼1 s.