ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. Sanchez, B. D. Ganapol
Nuclear Science and Engineering | Volume 84 | Number 1 | May 1983 | Pages 61-66
Technical Note | doi.org/10.13182/NSE83-A17458
Articles are hosted by Taylor and Francis Online.
The integral transform method (ITN) has been extended to the treatment of one-dimensional homogeneous media with linearly anisotropic scattering. A previously obtained formula linking the isotropic and the anisotropic one-dimensional kernels allows for calculation of the anisotropic matrix elements in the form of linear combinations of a few isotropic matrix elements. In practice, to solve the anisotropic problem of order N one needs only to calculate the isotropic collision matrix of order (N + 2) in plane and spherical geometries and of order (N + 1) in cylindrical geometry. The method is applied to the calculation of critical parameters for bare cylinders. Highly accurate values, to be used as benchmarks, are obtained and illustrate the precision and fast convergence rate of the method.