ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
K. Wisshak, F. Käppeler, R. L. Macklin, G. Reffo, F. Fabbri
Nuclear Science and Engineering | Volume 87 | Number 1 | May 1984 | Pages 48-58
Technical Paper | doi.org/10.13182/NSE84-A17445
Articles are hosted by Taylor and Francis Online.
The neutron capture widths of the s-wave resonances at 13.9 and 33.8 keV in 64Ni have been determined using a setup with extremely low neutron sensitivity completely different from all previous experiments on this isotope. This feature is important because these resonances exhibit a very large scattering-to-capture ratio. A pulsed 3-MV Van de Graaff accelerator and a kinematically collimated neutron beam, produced via the 7Li(p, n) reaction, was used in the experiments. Capture gamma rays were observed by three Moxon-Rae detectors with a graphite, a bismuth-graphite, and a bismuth converter, respectively. The samples were positioned at a neutron flight path of only 6 to 8 cm. Thus, events due to capture of resonance-scattered neutrons in the detectors or in surrounding materials are completely discriminated by their additional time of flight. The short flight path and the high neutron flux at the sample position allowed for a signal-to-background ratio of approximately unity even for the broad resonance at 33.8 kev. The data obtained with the individual detectors were corrected for the efficiency of the different converter materials. For that purpose, detailed theoretical calculations of the capture gamma-ray spectra of the measured isotope and of gold, which was used as a standard, were performed. The final radiative widths are Γγ(13.9 kev) = 1.01 ± 0.07 eV and Γγ(33.8 kev) = 1.16 ± 0.08 Ev, considerably smaller than the rough estimates obtained in previous work.