ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
William D. Hinkle, Henri Fenech
Nuclear Science and Engineering | Volume 87 | Number 1 | May 1984 | Pages 2-12
Technical Paper | doi.org/10.13182/NSE84-A17440
Articles are hosted by Taylor and Francis Online.
The results of an experiment on adiabatic annular air-water flow are described and analyzed to predict the gas/liquid film interaction and the dispersed mass flow rate of liquid. The experiment was conducted in a 1.262-cm-i.d. vertical tube, 426.72 cm long with upward flow. Several tests were conducted within a range of air mass flow rates of 23 to 144 kg/h, water mass flow rates of 46 to 237 kg/h, and inlet pressure of 276 to 620 kPa at 2°C. The pressure drop and the dispersed and film water mass fractions along the tube were measured. To obtain the wave velocity distribution, the wave disturbance length, and wave frequency, 3000 frame/s films were analyzed. The mass fraction of dispersed liquid transported by the gas is correlated as a function of static pressure drop, total mass flow rates of air and water, and distance from the water injection location. The analysis and correlation of the experimental results indicate that to a good approximation, the net rate of water mass transport from the film is proportional to the rate of shear energy transferred from the dispersed phase to the disturbance area of the waves. The rate of liquid droplet redeposition on the liquid film was assumed to produce an equal mass rate of liquid dispersion by “splashing.” The correlation fits the present experimental data with a ±30% band.