ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
William D. Hinkle, Henri Fenech
Nuclear Science and Engineering | Volume 87 | Number 1 | May 1984 | Pages 2-12
Technical Paper | doi.org/10.13182/NSE84-A17440
Articles are hosted by Taylor and Francis Online.
The results of an experiment on adiabatic annular air-water flow are described and analyzed to predict the gas/liquid film interaction and the dispersed mass flow rate of liquid. The experiment was conducted in a 1.262-cm-i.d. vertical tube, 426.72 cm long with upward flow. Several tests were conducted within a range of air mass flow rates of 23 to 144 kg/h, water mass flow rates of 46 to 237 kg/h, and inlet pressure of 276 to 620 kPa at 2°C. The pressure drop and the dispersed and film water mass fractions along the tube were measured. To obtain the wave velocity distribution, the wave disturbance length, and wave frequency, 3000 frame/s films were analyzed. The mass fraction of dispersed liquid transported by the gas is correlated as a function of static pressure drop, total mass flow rates of air and water, and distance from the water injection location. The analysis and correlation of the experimental results indicate that to a good approximation, the net rate of water mass transport from the film is proportional to the rate of shear energy transferred from the dispersed phase to the disturbance area of the waves. The rate of liquid droplet redeposition on the liquid film was assumed to produce an equal mass rate of liquid dispersion by “splashing.” The correlation fits the present experimental data with a ±30% band.