ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Joseph M. Doster, Matt B. Richards
Nuclear Science and Engineering | Volume 93 | Number 1 | May 1986 | Pages 69-77
Technical Paper | doi.org/10.13182/NSE83-A17418
Articles are hosted by Taylor and Francis Online.
Numerical solutions involving finite difference representations of the equations governing fluid flow, heat conduction, and diffusion processes (including neutron diffusion) usually consist of solving large sparse matrix equations. These matrix equations can be recast into M smaller coupled matrix equations amenable to solution by using M multiple computer processors operating in parallel. A special form of the fluids equations commonly used in nuclear reactor thermal-hydraulic analysis, i.e., one-dimensional flow in closed loop geometry is emphasized. Parallel algorithms for solving these equations are developed and evaluated in terms of computational speed against conventional solutions on a serial machine. Timing studies are performed to assess the efficiency of these methods and to determine the optimum number of parallel processors for these applications.