ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Joseph M. Doster, Matt B. Richards
Nuclear Science and Engineering | Volume 93 | Number 1 | May 1986 | Pages 69-77
Technical Paper | doi.org/10.13182/NSE83-A17418
Articles are hosted by Taylor and Francis Online.
Numerical solutions involving finite difference representations of the equations governing fluid flow, heat conduction, and diffusion processes (including neutron diffusion) usually consist of solving large sparse matrix equations. These matrix equations can be recast into M smaller coupled matrix equations amenable to solution by using M multiple computer processors operating in parallel. A special form of the fluids equations commonly used in nuclear reactor thermal-hydraulic analysis, i.e., one-dimensional flow in closed loop geometry is emphasized. Parallel algorithms for solving these equations are developed and evaluated in terms of computational speed against conventional solutions on a serial machine. Timing studies are performed to assess the efficiency of these methods and to determine the optimum number of parallel processors for these applications.