ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Y. T. Chan, S. Banerjee
Nuclear Science and Engineering | Volume 93 | Number 1 | May 1986 | Pages 62-68
Technical Paper | doi.org/10.13182/NSE83-A17417
Articles are hosted by Taylor and Francis Online.
Numerical methods for the solution of free interface problems are reviewed. For two-dimensional problems, an application of the random vortex method is proposed in which the rotational and irrotational flows are first calculated and then reconstituted into the time-dependent velocity field through the use of Hodge's decomposition theorem. The irrotational part is calculated by conformally mapping the flow, bounded on one side by the interface, into a strip at every time step, followed by use of the Gram-Schmidt orthonormalization process to solve Laplace's equation for the velocity potential. An alternative for the irrotational flow calculation, in which the free interface is represented by a vortex sheet and the boundary integral method is applied, is also discussed. The rotational field is calculated by generating vortex sheets to satisfy the no-slip boundary conditions, and by following the convective and diffusive motion of the sheets and vortex blobs. The technique is shown to yield accurate results for damping of solitary waves on shallow liquids.