ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Y. T. Chan, S. Banerjee
Nuclear Science and Engineering | Volume 93 | Number 1 | May 1986 | Pages 62-68
Technical Paper | doi.org/10.13182/NSE83-A17417
Articles are hosted by Taylor and Francis Online.
Numerical methods for the solution of free interface problems are reviewed. For two-dimensional problems, an application of the random vortex method is proposed in which the rotational and irrotational flows are first calculated and then reconstituted into the time-dependent velocity field through the use of Hodge's decomposition theorem. The irrotational part is calculated by conformally mapping the flow, bounded on one side by the interface, into a strip at every time step, followed by use of the Gram-Schmidt orthonormalization process to solve Laplace's equation for the velocity potential. An alternative for the irrotational flow calculation, in which the free interface is represented by a vortex sheet and the boundary integral method is applied, is also discussed. The rotational field is calculated by generating vortex sheets to satisfy the no-slip boundary conditions, and by following the convective and diffusive motion of the sheets and vortex blobs. The technique is shown to yield accurate results for damping of solitary waves on shallow liquids.