ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
J. Voignier, S. Joly, G. Grenier
Nuclear Science and Engineering | Volume 93 | Number 1 | May 1986 | Pages 43-56
Technical Paper | doi.org/10.13182/NSE83-A17415
Articles are hosted by Taylor and Francis Online.
Absolute neutron capture cross sections for natural elements of copper, yttrium, zirconium, niobium, lanthanum, gadolinium, terbium, tantalum, tungsten, rhenium, platinum, thallium, bismuth, and separated isotopes of 63Cu, 65Cu, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd, 182W, 183W, 184W, 186W, 203Tl, 205Tl have been measured in the 0.5- to 3.0-MeV energy range. For most of these nuclides and isotopes, available data were scarce and discrepant, especially for neutron energies above 0.7 MeV. A spectrum-fitting method was developed to deduce the radiative capture cross section from prompt gamma rays emitted by the sample. The gamma rays were recorded by a NaI scintillator surrounded by an annular detector and the capture gamma-ray spectrum was obtained by unfolding the observed pulse-height distribution with the response function of the detector. Gamma-ray spectra emitted in the capture of 0.5-MeV neutrons as well as the multiplicity of the gamma-ray transitions are presented.