ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
R. D. Baybarz, B. S. Weaver, H. B. Ivinser
Nuclear Science and Engineering | Volume 17 | Number 3 | November 1963 | Pages 457-462
Technical Paper | doi.org/10.13182/NSE63-A17399
Articles are hosted by Taylor and Francis Online.
The Tramex Process for separating the transplutonium elements from ionic impurities and fission products, including the rare earths, was developed and tested in laboratory scale experiments. This process is based on tertiary amine extraction of transplutonium elements from concentrated lithium chloride solutions. Single-stage separation factors between the transplutonium and the lanthanide elements were found to be ≧100. Extraction positions were found to be Cf > Fm > Es > Bk > Am > Cm ≫; lanthanides. Extraction coefficients were directly proportional to the square of the amine concentration in the solvent, directly proportional to the 17th power of the LiCl concentration in the aqueous phase, and inversely proportional to the 1.3 to 2.0 power of the acid concentration in the aqueous phase. Extraction coefficients were affected by the presence of various contaminant anions and were also dependent upon the solvent used to dilute the amine.