ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
F. C. Schoenig, K. S. Quisenberry, D. P. Stricos, and H. Bernatowicz
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 393-398
Technical Paper | doi.org/10.13182/NSE66-A17362
Articles are hosted by Taylor and Francis Online.
The temperature dependence of the thorium-oxide resonance integral has been measured over a wide (20 to 1550 °C) temperature range. The activation method was used; the 310 keV γ ray from the decay of 233Pa was measured with a multichannel pulse-height analyzer. Measurements were performed on ThO2 rods of 0.490− and 0.353−in. diam. (surface-to-mass ratio = 0.340 and 0.465 cm2/g, respectively). The temperature dependence of the thorium-oxide resonance integral was found not to be a linear function of either (t − t0) or (√T − √T0), where t and T and centigrade and Kelvin temperature, and t0 and T0 are 20°C, and 293°K, respectively. Thus the familiar forms of the temperature dependence of the effective resonance integral, namely RI(T)/RI(T0) = 1 + α (t − t0) = 1 + β × (√T − √To) are not appropriate representations of the data. The Doppler coefficient in a 1/E spectrum is defined by α0 = [1/RI(T)] [dRI(T)/ dT] where RI(T) is the effective resonance integral of the sample excluding the 1/v contribution, and T is the temperature of the sample. It has been found that α0 = [(0.16 ± 0.01)/T] yields a good fit to the experimental data of both sample sizes. It follows that RI(T) = RI(T0) (T/T0)(0.16 ± 0.01).