ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
F. W. Staub, N. Zuber, G. Bijwaard
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 279-295
Technical Paper | doi.org/10.13182/NSE67-A17338
Articles are hosted by Taylor and Francis Online.
Experimental data are presented on the transient response of the vapor volumetric concentration in a boiling liquid. The experiments were conducted with Refrigerant-22 in forced upward flow through an electrically heated circular tube. The experiments were performed by oscillating the power input to the metal test section while maintaining a constant discharge pressure and a constant inlet liquid velocity. The amplitude of the power oscillations was varied between 5 and 40% of the average power at frequencies between 0.01 and 10 cps. Steady-state and transient void fractions were measured at six axial locations using a two-beam x-ray attenuation traverse method. Satisfactory agreement is shown between the results predicted by the void propagation equation and the experimental data. It is shown in particular that: 1) The rate of propagation of the voids as well as the wave form of the void disturbance as it propagates along the cluct can be predicted by means of kinematic waves 2) The void response depends upon the flow regime 3) Both the propagation velocity and the wave form can be predicted rather accurately if the effects of flow regime are taken into account. The loss of accuracy, introduced by not considering the effect of flow regime, is also demonstrated.