ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
F. R. Channon, R. L. Seale
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 242-260
Technical Paper | doi.org/10.13182/NSE67-A17335
Articles are hosted by Taylor and Francis Online.
The behavior of thermal neutrons in a water shield containing ducts was studied experimentally and compared with theoretical models. In addition to measuring the total flux, a source separation technique was used to isolate the various flux components, which are: 1)direct flux, uncollided neutrons which enter the duct mouth 2) scattered flux, collided neutrons which enter the duct mouth 3) penetration flux, collided neutrons which originally enter the shield. Duct diameters from 1 to 4 in. were considered. The shield absorption properties were altered by dissolving various amounts of boric acid in the water. The duct cross-sectional shape was changed by partially flooding the interior of the duct. The experimental results indicated that the direct flux is inversely proportional to distance squared. For sufficiently long ducts, the direct flux is nearly the total flux. For shorter ducts, either the scattered flux or penetration flux may produce the largest contribution to the total flux. Each of these components peak near the duct mouth and then attenuate more rapidly than the direct flux. Successful calculational models were developed for each of the flux components. These permitted determination of the total flux to within a factor of 1.3 at distances greater than two or three duct diameters from the mouth.