ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Dong H. Nguyen, Lawrence M. Grossman
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 233-241
Technical Paper | doi.org/10.13182/NSE67-A17334
Articles are hosted by Taylor and Francis Online.
The space-dependent ion production rate by fission fragments escaping from a fuel plate is studied using: 1) the Bohr stopping equation with the Thomas-Fermi approximation of the effective charge Zeff; 2) the Alexander-Gazdik (A-G) semiempirical velocity-distance relationship for fission fragments. The assumptions are: a) no scattering during slowing down; b) the nonionizing energy loss in nuclear recoils can be taken into account by increasing the w value for fission fragments over that for α particles; c) a delta-function mass distribution for the light and heavy group; and d) a monoenergetic source. The energy current carried by the fragments at a point in the outer medium is first derived, and the energy deposition per unit volume per second is obtained by taking the gradient of the energy current. Dividing the energy deposition by the w value for the medium yields the ion production rate by fission fragments in that medium. The results show that the semiempirical velocity-distance relationship gives a higher ion production rate than that given by the velocity-distance relationship derived from the Bohr stopping equation with the Thomas-Fermi approximation of the effective charge Zeff. The volumetric, spatial average ion production rate is also obtained. For a fuel plate containing 20% 235U and 80% Pt and for a flux of 6 × 1010 n/(cm2 sec), the velocity-distance relationship based on the Bohr stopping equation gives an average ion production rate of 2.0 × 1013 ion pairs/(cm3 sec) in a mixture Ne + 0.1% Ag. Using the same values for the fragment ranges, the semiempirical velocity-distance relationship yields an average volumetric ion production rate in neon higher by about 18% for the light fragment and by about 20% for the heavy fragment. According to existing experimental results on plasmas induced by fission fragments, an ion source of 2.0 × 1013 ion pairs/(cm3 sec) would yield a conductivity of about 1 × 10−3 (Ωm)−1 in the gas mixture Ne + 0.1% Ag, at 200-mm Hg and 400 °K and at an electric field of 560V/m.